论文标题

$(2,q)$ - laplacian方程的归一化解决方案

Normalized solutions to a class of $(2,q)$-Laplacian equations

论文作者

Baldelli, Laura, Yang, Tao

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This paper concerns the existence of normalized solutions to a class of $(2,q)$-Laplacian equations in all the possible cases according to the value of $p$ with respect to the critical exponent $2(1+2/N)$. In the $L^2$-subcritical case, we study a global minimization problem and obtain a ground state solution. While in the $L^2$-critical case, we prove several nonexistence results, extended also in the $L^q$-critical case. At last, we derive a ground state and infinitely many radial solutions in the $L^2$-supercritical case. Compared with the classical Schrödinger equation, the $(2,q)$-Laplacian equation possesses a quasi-linear term, which brings in some new difficulties and requires a more subtle analysis technique. Moreover, the vector field $\vec{a}(ξ)=|ξ|^{q-2}ξ$ corresponding to the $q$-Laplacian is not strictly monotone when $q<2$, so we shall consider separately the case $q<2$ and the case $q>2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源