论文标题
部分可观测时空混沌系统的无模型预测
Rabinowitz Fukaya categories and the categorical formal punctured neighborhood of infinity
论文作者
论文摘要
本文构建并研究了Rabinowitz(包裹)福卡亚类别,该类别是一个在Liouville的歧管中的确切圆柱lagrangians的绝对不变性的,其同胞形态学,``Rabinowitz``Rabinowitz包裹了浮动的浮动群体“衡量包裹的浮动浮动共同体的失败,至少满足了我们的综合范围,尤其是我们的综合范围(以及均配置了范围)。主要的结果回答了abouzaid的猜想,将拉比诺维茨和通常的福卡亚类别与埃菲莫夫(Efimov)介绍的一般建筑(分类形式的无限域名)作为应用程序,我们显示Rabinowitz Fukaya类别如何适合 - 尤其是在镜像中,我们是如何显示的。
This paper constructs and studies the Rabinowitz (wrapped) Fukaya category, a categorical invariant of exact cylindrical Lagrangians in a Liouville manifold whose cohomological morphisms, ``Rabinowitz wrapped Floer homology groups" measure the failure of wrapped Floer cohomology to satisfy Poincare duality (and in particular vanish for any pair with at least one compact Lagrangian). Our main result, answering a conjecture of Abouzaid, relates the Rabinowitz and usual wrapped Fukaya category by way of a general construction introduced by Efimov, the categorical formal punctured neighborhood of infinity. As an application, we show how Rabinowitz Fukaya categories can be fit into - and in particular often computed in terms of - mirror symmetry.