论文标题

使用可配置的合成错误告知选择用于医疗图像分割评估评估的性能指标

Informing selection of performance metrics for medical image segmentation evaluation using configurable synthetic errors

论文作者

Guan, Shuyue, Samala, Ravi K., Chen, Weijie

论文摘要

基于机器学习的医学成像细分被广泛用于从诊断到放射疗法治疗计划的临床应用中。带有地面真理的分段医学图像对于研究不同分割性能指标的特性以告知度量标准选择。常规的几何形状通常用于合成分割误差并说明性能指标的特性,但它们缺乏真实图像中解剖变化的复杂性。在这项研究中,我们提出了一种通过从真实医学图像中提取的解剖对象的引用(真实)掩码来模拟分割的工具。我们的工具旨在通过一组用户可配置参数来修改定义的真实轮廓并模拟不同类型的分段错误。我们定义了从胶质瘤图像分割(GLIS-RT)数据库中的230个患者图像中的地面真相对象。对于每个对象,我们使用分割合成工具来合成10个版本的分割版本(即10个模拟的分段或算法),其中每个版本都具有分段错误的预定义组合。然后,我们应用了20个性能指标来评估所有合成分割。我们证明了这些指标的属性,包括它们捕获特定类型的分割错误的能力。通过分析这些指标的内在属性并对细分错误进行分类,我们正在努力开发一个决策树工具,以协助选择细分性能指标。

Machine learning-based segmentation in medical imaging is widely used in clinical applications from diagnostics to radiotherapy treatment planning. Segmented medical images with ground truth are useful for investigating the properties of different segmentation performance metrics to inform metric selection. Regular geometrical shapes are often used to synthesize segmentation errors and illustrate properties of performance metrics, but they lack the complexity of anatomical variations in real images. In this study, we present a tool to emulate segmentations by adjusting the reference (truth) masks of anatomical objects extracted from real medical images. Our tool is designed to modify the defined truth contours and emulate different types of segmentation errors with a set of user-configurable parameters. We defined the ground truth objects from 230 patient images in the Glioma Image Segmentation for Radiotherapy (GLIS-RT) database. For each object, we used our segmentation synthesis tool to synthesize 10 versions of segmentation (i.e., 10 simulated segmentors or algorithms), where each version has a pre-defined combination of segmentation errors. We then applied 20 performance metrics to evaluate all synthetic segmentations. We demonstrated the properties of these metrics, including their ability to capture specific types of segmentation errors. By analyzing the intrinsic properties of these metrics and categorizing the segmentation errors, we are working toward the goal of developing a decision-tree tool for assisting in the selection of segmentation performance metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源