论文标题

通过分类和平滑度分析轻松自动神经居住

Easing Automatic Neurorehabilitation via Classification and Smoothness Analysis

论文作者

Bensalah, Asma, Fornés, Alicia, Carmona-Duarte, Cristina, Lladós, Josep

论文摘要

鉴于所有患者没有标准的中风康复计划,评估康复阶段中势后患者运动质量至关重要。实际上,这基本上取决于患者的功能独立性及其在康复课程中的进步。为了应对这一挑战并使神经康复更加敏捷,我们提出了一条自动评估管道,该管道首先通过浅层深度学习架构识别患者的运动,然后使用混蛋措施和相关措施来测量运动质量。这项工作的一个特殊性是所使用的数据集在临床上是相关的,因为它代表了FUGL-MEYER启发的运动,这是中风患者的常见上LIMB临床中风评估量表。我们表明,除了对患者在康复期间的进步得出的结论以外,还可以检测健康与患者运动之间的对比度,这与临床医生对每种情况的发现相对应。

Assessing the quality of movements for post-stroke patients during the rehabilitation phase is vital given that there is no standard stroke rehabilitation plan for all the patients. In fact, it depends basically on the patient's functional independence and its progress along the rehabilitation sessions. To tackle this challenge and make neurorehabilitation more agile, we propose an automatic assessment pipeline that starts by recognizing patients' movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures. A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients. We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients' progress during the rehabilitation sessions that correspond to the clinicians' findings about each case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源