论文标题
VertMatch:用于3D超声量的椎骨结构检测的半监督框架
VertMatch: A Semi-supervised Framework for Vertebral Structure Detection in 3D Ultrasound Volume
论文作者
论文摘要
三维(3D)超声成像技术已应用于脊柱侧弯评估,但是当前的评估方法仅使用冠状投影图像,无法说明3D畸形和椎骨旋转。椎骨检测对于揭示3D脊柱信息至关重要,但是由于复杂的数据和有限的注释,检测任务具有挑战性。我们提出了VertMatch,这是一个两步框架,可通过以半监督方式利用未标记的数据来检测3D超声量的椎骨结构。第一步是检测到全球横向切片上结构的可能位置,然后根据检测到的位置进行裁剪。第二步是区分斑块是否包含真实的椎骨结构,并从第一步筛选预测位置。 VertMatch开发了三个用于半监督学习的新颖组成部分:对于第一步中的位置检测,(1)解剖学先验用于筛选从置信度阈值方法产生的伪标签; (2)通过输入多个相邻的切片来利用多板的一致性来利用更多未标记的数据; (3)对于第二步中的补丁识别,在每个批次中都重新平衡类别以解决不平衡问题。实验结果表明,VertMatch可以在超声体积中准确检测椎骨,并且胜过最先进的方法。 VertMatch在40次超声扫描中的临床应用中也得到了验证,这可能是脊柱侧弯3D评估的一种有希望的方法。
Three-dimensional (3D) ultrasound imaging technique has been applied for scoliosis assessment, but current assessment method only uses coronal projection image and cannot illustrate the 3D deformity and vertebra rotation. The vertebra detection is essential to reveal 3D spine information, but the detection task is challenging due to complex data and limited annotations. We propose VertMatch, a two-step framework to detect vertebral structures in 3D ultrasound volume by utilizing unlabeled data in semi-supervised manner. The first step is to detect the possible positions of structures on transverse slice globally, and then the local patches are cropped based on detected positions. The second step is to distinguish whether the patches contain real vertebral structures and screen the predicted positions from the first step. VertMatch develops three novel components for semi-supervised learning: for position detection in the first step, (1) anatomical prior is used to screen pseudo labels generated from confidence threshold method; (2) multi-slice consistency is used to utilize more unlabeled data by inputting multiple adjacent slices; (3) for patch identification in the second step, the categories are rebalanced in each batch to solve imbalance problem. Experimental results demonstrate that VertMatch can detect vertebra accurately in ultrasound volume and outperforms state-of-the-art methods. VertMatch is also validated in clinical application on forty ultrasound scans, and it can be a promising approach for 3D assessment of scoliosis.