论文标题

机器学习是各种网络渗透阈值的准确预测指标

Machine Learning as an Accurate Predictor for Percolation Threshold of Diverse Networks

论文作者

Patwardhan, Siddharth, Majumder, Utso, Sarma, Aditya Das, Pal, Mayukha, Dwivedi, Divyanshi, Panigrahi, Prasanta K.

论文摘要

渗透阈值是确定大型网络固有刚性的重要措施。大型网络的渗滤阈值的预测因素在计算上是强度的运行,因此,必须开发网络渗透阈值的预测指标,而网络的渗透阈值不依赖数值模拟。我们证明了五种基于机器学习的回归技术对渗透阈值的准确预测的功效。生成的用于训练机器学习模型的数据集包含777个真实和合成网络。它由网络的5个统计和结构属性作为特征组成,数值计算的渗透阈值作为输出属性。我们确定机器学习模型优于键渗透阈值的三个现有经验估计量,并扩展了该实验以预测位点和爆炸性渗透。此外,我们比较了模型在使用RMSE值预测渗透阈值时的性能。梯度增强回归器,多层感知器和随机森林回归模型在被考虑的模型中实现了最少的RMSE值。

The percolation threshold is an important measure to determine the inherent rigidity of large networks. Predictors of the percolation threshold for large networks are computationally intense to run, hence it is a necessity to develop predictors of the percolation threshold of networks, that do not rely on numerical simulations. We demonstrate the efficacy of five machine learning-based regression techniques for the accurate prediction of the percolation threshold. The dataset generated to train the machine learning models contains a total of 777 real and synthetic networks. It consists of 5 statistical and structural properties of networks as features and the numerically computed percolation threshold as the output attribute. We establish that the machine learning models outperform three existing empirical estimators of bond percolation threshold, and extend this experiment to predict site and explosive percolation. Further, we compared the performance of our models in predicting the percolation threshold using RMSE values. The gradient boosting regressor, multilayer perceptron and random forests regression models achieve the least RMSE values among considered models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源