论文标题
HPointLoc:使用合成RGB-D图像的基于点的室内位置识别
HPointLoc: Point-based Indoor Place Recognition using Synthetic RGB-D Images
论文作者
论文摘要
我们提出了一个名为HPointLoc的新型数据集,专为探索室内环境中的视觉位置识别功能,并在同时定位和映射中检测循环检测。当带有板载RGB-D摄像头的机器人可以以不同角度开车经过同一位置(“点”)时,循环检测子任务尤其重要。数据集基于流行的栖息地模拟器,在该模拟器中,可以使用自己的传感器数据和开放的数据集中的位置来生成耐心的室外场景,以便在其中生成poteralistic not the potit potit potit potit potit potit potit potit potit potit potit potit potit potit potit potit potit potit potit potit potit potit potit potit potit potit contection in actage。数据集,我们提出了一种名为PNTR的新模块化方法。 HpointLoc数据集,在无人车辆的本地化系统中具有很高的潜力。
We present a novel dataset named as HPointLoc, specially designed for exploring capabilities of visual place recognition in indoor environment and loop detection in simultaneous localization and mapping. The loop detection sub-task is especially relevant when a robot with an on-board RGB-D camera can drive past the same place (``Point") at different angles. The dataset is based on the popular Habitat simulator, in which it is possible to generate photorealistic indoor scenes using both own sensor data and open datasets, such as Matterport3D. To study the main stages of solving the place recognition problem on the HPointLoc dataset, we proposed a new modular approach named as PNTR. It first performs an image retrieval with the Patch-NetVLAD method, then extracts keypoints and matches them using R2D2, LoFTR or SuperPoint with SuperGlue, and finally performs a camera pose optimization step with TEASER++. Such a solution to the place recognition problem has not been previously studied in existing publications. The PNTR approach has shown the best quality metrics on the HPointLoc dataset and has a high potential for real use in localization systems for unmanned vehicles. The proposed dataset and framework are publicly available: https://github.com/metra4ok/HPointLoc.