论文标题

关于Zaremba的猜想,在Korobov上

On Korobov bound concerning Zaremba's conjecture

论文作者

Moshchevitin, Nikolay, Murphy, Brendan, Shkredov, Ilya

论文摘要

我们特别证明,对于任何足够大的prime $ p $,有$ 1 \ le a <p $,以便所有$ a/p $的偏部分都由$ o(\ log p/\ log log \ log \ log p)$界定。对于复合分母,获得了类似的结果。这改善了井的众所周知的关于Zaremba从持续分数理论中的猜想的约束。

We prove in particular that for any sufficiently large prime $p$ there is $1\le a<p$ such that all partial quotients of $a/p$ are bounded by $O(\log p/\log \log p)$. For composite denominators a similar result is obtained. This improves the well--known Korobov bound concerning Zaremba's conjecture from the theory of continued fractions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源