论文标题
可计数马尔可夫偏移和exel-laca代数的拓扑熵
Topological entropy for countable Markov shifts and Exel--Laca algebras
论文作者
论文摘要
我们表明,与无限过渡矩阵$ a $相关的可计数马尔可夫偏移的(Gurevich)拓扑熵与Exel-laca-laca代数的非交换性拓扑熵相吻合,该代数与$ a $相关,在$ a $ a $的某些条件下。满足条件的一个重要例子是更新移位,这不是局部有限的。我们还提出了有趣的问题,用于对非局部有限过渡矩阵的非交流性拓扑熵的未来研究。
We show that the (Gurevich) topological entropy for the countable Markov shift associated with an infinite transition matrix $A$ coincides with the non-commutative topological entropy for the Exel--Laca algebra associated with $A$, under certain conditions on $A$. An important example satisfying the conditions is the renewal shift, which is not locally finite. We also pose interesting questions for future research on non-commutative topological entropy for non-locally finite transition matrices.