论文标题
插值和指数抑制宇宙学常数在非苏匹马对称词素中,一般$ \ mathbb {z} _ {2} $ twist
Interpolation and Exponentially Suppressed Cosmological Constant in Non-Supersymmetric Heterotic Strings with General $\mathbb{Z}_{2}$ Twists
论文作者
论文摘要
我们研究了一般的非苏格米对称杂质弦模型,包括所谓的插值模型,$ d $ - 数值在任意数量的自由作用$ \ mathbb {z} _ {2} $ twisted Direwsions上被任意数量。将压实半径的限制限制在零和无穷大(终点限制)中,我们在$ d = 2 $(8维)情况下显示了一些各种插值模式的示例。在渐近对称性的区域中,我们得出了$(10-D)$(10-d)$尺寸的非苏匹马对称杂质弦模型的公式,并具有一般$ \ mathbb {z} _ {z} _ {2} $ tist,并不依赖于所有其他终点的空间。还分析了宇宙常数的模量稳定性。
We study general non-supersymmetric heterotic string models, including so-called interpolating models, $d$-dimensionally compactified with the arbitrary number of freely acting $\mathbb{Z}_{2}$ twisted directions. Taking the limits of the compactified radii to zero and infinity (the endpoint limits), we show some examples of the various interpolation patterns in the $d=2$ (8-dimensional) case. In the region where supersymmetry is asymptotically restored, we derive the formula for the one-loop cosmological constant of $(10-d)$ dimensional non-supersymmetric heterotic string models with general $\mathbb{Z}_{2}$ twists, which does not depend on all the other endpoints and find out the points in the moduli space where the cosmological constant is exponentially suppressed. The moduli stability of the cosmological constant is also analyzed.