论文标题

无约束道路的细粒车辆检测(FGVD)数据集

A Fine-Grained Vehicle Detection (FGVD) Dataset for Unconstrained Roads

论文作者

Khoba, Prafful Kumar, Parikh, Chirag, Saluja, Rohit, Sarvadevabhatla, Ravi Kiran, Jawahar, C. V.

论文摘要

以前的细粒数据集主要集中在分类上,并且通常以受控的设置捕获,相机专注于对象。我们在野外介绍了第一个细颗粒的车辆检测(FGVD)数据集,该数据集是从安装在汽车上的移动相机中捕获的。它包含5502个场景图像,具有210个独特的细粒标签,这些标签由三级层次结构组织多种车辆类型。虽然以前的分类数据集还包括制造不同类型的汽车,但FGVD数据集引入了新的类标签,用于对两轮车,Autorickshaws和Trucks进行分类。 FGVD数据集具有挑战性,因为它在复杂的交通情况下具有类型,规模,姿势,遮挡和照明条件的阶级和类间变化的复杂交通情况。由于缺乏层次建模,当前的对象检测器(例如Yolov5和RCNN)在我们的数据集上的性能较差。除了为FGVD数据集上的现有对象探测器提供基线结果外,我们还介绍了FGVD任务的现有检测器和最新的层次残留网络(HRN)分类器的组合结果。最后,我们表明FGVD车辆图像是在细粒数据集中分类的最具挑战性的。

The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源