论文标题

$ 3 \ times 3 $类似矩阵的无效矩阵的零件理想

Null ideals of sets of $3 \times 3$ similar matrices with irreducible characteristic polynomial

论文作者

Swartz, Eric, Werner, Nicholas J.

论文摘要

让$ f $为一个字段,$ m_n(f)$ $ n \ times n $矩阵的戒指超过$ f $。给定一个$ m_n(f)$的子集$ s $,$ s $的null理想是所有多项式$ f $的集合,其系数为$ m_n(f)$,因此$ f(a)= 0 $ for s $ in s $中的所有$ a \。我们说,如果$ s $的无效理想是多项式环$ m_n(f)[x] $的双面理想,那么$ s $是核心。我们研究了足够的条件,在$ S $由$ 3 \ times 3 $矩阵组成的情况下,$ s $是核心,所有这些条件共享相同的不可约性多项式。特别是,我们表明,如果$ f $是有限的,$ q $元素和$ | s | \ geqslant q^3-q^2+1 $,然后$ s $是核心。作为我们工作的副产品,我们可以在vandermonde矩阵,可逆矩阵换向器以及通过可逆差异关系定义的图形上获得一些结果。

Let $F$ be a field and $M_n(F)$ the ring of $n \times n$ matrices over $F$. Given a subset $S$ of $M_n(F)$, the null ideal of $S$ is the set of all polynomials $f$ with coefficients from $M_n(F)$ such that $f(A) = 0$ for all $A \in S$. We say that $S$ is core if the null ideal of $S$ is a two-sided ideal of the polynomial ring $M_n(F)[x]$. We study sufficient conditions under which $S$ is core in the case where $S$ consists of $3 \times 3$ matrices, all of which share the same irreducible characteristic polynomial. In particular, we show that if $F$ is finite with $q$ elements and $|S| \geqslant q^3-q^2+1$, then $S$ is core. As a byproduct of our work, we obtain some results on block Vandermonde matrices, invertible matrix commutators, and graphs defined via an invertible difference relation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源