论文标题
与较高连续的最小值相关的不良近似矩阵有关的分数维度
Fractional dimension related to badly approximable matrices associated with higher successive minima
论文作者
论文摘要
在本文中,我们介绍了使用$ \ mathbb r^d $中的更高的Sucessive minima的高阶近似矩阵的概念。我们证明,对于不到$ d $的订单,勒布斯格测量零,它们之间的差距仍然具有完整的Hausdorff尺寸。
In this article we introduce the notion of badly approximable matrices of higher order using higher sucessive minima in $\mathbb R^d$. We prove that for order less than $d$, they have Lebesgue measure zero and the gaps between them still have full Hausdorff dimension.