论文标题
亚伯 - 雅各比(Abel-Jacobi)部分下的Brill-Noether课程的回调
Pullbacks of Brill-Noether Classes Under Abel-Jacobi Sections
论文作者
论文摘要
我们证明,在任何Abel-Jacobi部分下,Brill-Noether基因座的虚拟基本类别的回调位于稳定曲线模量空间的重言式环中。这解决了Pagani,Ricolfi和van Zelm的猜想,并且是了解$ \ mgn $的对数交叉点理论的更广泛计划的一部分。
We prove that the pullbacks of the virtual fundamental classes of the Brill-Noether loci under any Abel-Jacobi section lie in the tautological ring of the moduli space of stable curves. This resolves a conjecture of Pagani, Ricolfi and van Zelm, and is part of a broader program to understand the logarithmic intersection theory of $\Mgn$.