论文标题

奇异性的年轻方程

Young equations with singularities

论文作者

Addona, D., Lorenzi, L., Tessitore, G.

论文摘要

在本文中,我们证明了对年轻方程式$ dy(t)= ay(t)dt+σ(y(t))dx(t)$,$ t \ in [0,t] $,$ y($ y(0)=ψ$)的存在和独特性。在这里,$ a $是一个无限的运算符,在Banach Space $ X $上,生成有界线性运算符$(s(t))_ {t \ geq 0} $的半元组,$ x $,$ x $是真实价值的$η$ -H $-Hölder连续。我们的目的是减少参考书目中的[4]和[1]和[1](另请参见[2,5]),最初的基准$ψ$的规律性要求最终将其丢弃。 主要工具是针对新的增量的缝纫地图的定义,该缝纫地图允许在一般间隔$ [a,b] \ subset \ mathbb r $中构建年轻的卷积积分,当该功能下的$x_α$ - $x_α$ norm the Integral sign blass blass bloved接近$ a $ a $ a $和$x_α$是$x_α$是$ x $ x $ x $ x $和$ x $ d(a a a)之间的$x_α$。

In this paper we prove existence and uniqueness of a mild solution to the Young equation $dy(t)=Ay(t)dt+σ(y(t))dx(t)$, $t\in[0,T]$, $y(0)=ψ$. Here, $A$ is an unbounded operator which generates a semigroup of bounded linear operators $(S(t))_{t\geq 0}$ on a Banach space $X$, $x$ is a real-valued $η$-Hölder continuous. Our aim is to reduce, in comparison to [4] and [1] (see also [2,5]) in the bibliography, the regularity requirement on the initial datum $ψ$ eventually dropping it. The main tool is the definition of a sewing map for a new class of increments which allows the construction of a Young convolution integral in a general interval $[a,b]\subset \mathbb R$ when the $X_α$-norm of the function under the integral sign blows up approaching $a$ and $X_α$ is an intermediate space between $X$ and $D(A)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源