论文标题

MagicNet:通过Magic Cuble分区和恢复半监督的多器官分割

MagicNet: Semi-Supervised Multi-Organ Segmentation via Magic-Cube Partition and Recovery

论文作者

Chen, Duowen, Bai, Yunhao, Shen, Wei, Li, Qingli, Yu, Lequan, Wang, Yan

论文摘要

我们提出了一个新颖的教师学生模型,用于半监督的多器官分割。在教师学生模型中,通常在未标记的数据上采用数据扩展,以正规化教师和学生之间的一致培训。我们从一个关键的角度开始,固定的相对位置和不同器官的可变大小可以提供分布信息,其中绘制了多器官CT扫描。因此,我们将先前的解剖学视为指导数据增强并减少标记和未标记图像之间的不匹配的强大工具,以进行半监督学习。更具体地说,我们提出了基于分区和恢复n $^3 $立方体交叉和标记和未标记图像的数据增强策略。我们的策略鼓励未标记的图像从标记的图像(跨分支)中学习相对位置的器官语义,并增强了小型器官(分支内)的学习能力。对于分支内部,我们进一步建议通过将学习的表示形式从小立方体融合到局部属性来完善伪标签的质量。我们的方法被称为魔术网,因为它将CT卷视为魔术立方体,而N $^3 $ -Cube分区和恢复过程与演奏魔群的规则相匹配。对两个公共CT多器官数据集进行了广泛的实验,证明了魔术网的有效性,并且明显优于最先进的半监督医学图像分割方法,在MACT数据集上具有 +7%的DSC提高,具有10%的标记图像。代码可在https://github.com/deepmed-lab-ecnu/magicnet上找到。

We propose a novel teacher-student model for semi-supervised multi-organ segmentation. In teacher-student model, data augmentation is usually adopted on unlabeled data to regularize the consistent training between teacher and student. We start from a key perspective that fixed relative locations and variable sizes of different organs can provide distribution information where a multi-organ CT scan is drawn. Thus, we treat the prior anatomy as a strong tool to guide the data augmentation and reduce the mismatch between labeled and unlabeled images for semi-supervised learning. More specifically, we propose a data augmentation strategy based on partition-and-recovery N$^3$ cubes cross- and within- labeled and unlabeled images. Our strategy encourages unlabeled images to learn organ semantics in relative locations from the labeled images (cross-branch) and enhances the learning ability for small organs (within-branch). For within-branch, we further propose to refine the quality of pseudo labels by blending the learned representations from small cubes to incorporate local attributes. Our method is termed as MagicNet, since it treats the CT volume as a magic-cube and N$^3$-cube partition-and-recovery process matches with the rule of playing a magic-cube. Extensive experiments on two public CT multi-organ datasets demonstrate the effectiveness of MagicNet, and noticeably outperforms state-of-the-art semi-supervised medical image segmentation approaches, with +7% DSC improvement on MACT dataset with 10% labeled images. Code is available at https://github.com/DeepMed-Lab-ECNU/MagicNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源