论文标题

在双曲空间上的小组操作的属性(NL)

Property (NL) for group actions on hyperbolic spaces

论文作者

Balasubramanya, Sahana, Fournier-Facio, Francesco, Genevois, Anthony, Sisto, Alessandro

论文摘要

我们介绍属性(NL),这表明一组不接受具有Loxodolomic元素的双曲线空间(等距)作用。换句话说,这样的组$ g $只能接受椭圆形或肉眼双曲线动作,因此其双曲结构的poset $ \ Mathcal {h}(g)$是微不足道的。事实证明,许多团体都满足了这一财产。我们开始对该现象的正式研究。特别重要的是本文中动态标准的证明,该证明确保对紧凑型Hausdorff空间具有丰富动作的群体具有属性(NL)。其中包括许多类似汤普森的群体,例如$ V,T $,甚至是扭曲的Brin组 - Thompson组,这意味着每个有限生成的Quasi Imetricter群都将其嵌入到具有属性(NL)的有限生成的简单组中。我们还研究了小组操作下该物业的稳定性,并探索与其他固定点特性的连接。在附录(由亚历山德罗·西斯托(Alessandro Sisto)作者)中,我们描述了从屈曲空间上从无围空的空间构造的构造,从无围空的空间开始,从而保留了初始动作的各种特性。

We introduce Property (NL), which indicates that a group does not admit any (isometric) action on a hyperbolic space with loxodromic elements. In other words, such a group $G$ can only admit elliptic or horocyclic hyperbolic actions, and consequently its poset of hyperbolic structures $\mathcal{H}(G)$ is trivial. It turns out that many groups satisfy this property; and we initiate the formal study of this phenomenon. Of particular importance is the proof of a dynamical criterion in this paper that ensures that groups with rich actions on compact Hausdorff spaces have Property (NL). These include many Thompson-like groups, such as $V, T$ and even twisted Brin--Thompson groups, which implies that every finitely generated group quasi-isometrically embeds into a finitely generated simple group with Property (NL). We also study the stability of the property under group operations and explore connections to other fixed point properties. In the appendix (by Alessandro Sisto) we describe a construction of cobounded actions on hyperbolic spaces starting from non-cobounded ones that preserves various properties of the initial action.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源