论文标题

一种快速而收敛的组合牛顿和梯度下降方法,用于计算化学反应网络的稳态

A fast and convergent combined Newton and gradient descent method for computing steady states of chemical reaction networks

论文作者

Berra, Silvia, La Torraca, Alessandro, Benvenuto, Federico, Sommariva, Sara

论文摘要

在这项工作中,我们提出了一种快速的,全球收敛的迭代算法,用于计算非线性大型二次自主差分方程(ODES)建模的非线性大型系统的渐近状态,例如复杂化学反应网络的动态。为了实现这一目标,我们将问题重新制定为一个受约束的优化问题,其中需要确定一组非线性方程的根源。然后,我们建议使用预测的牛顿的方法与梯度下降算法相结合,以使整个算法生成的序列的每个限制点都是固定点。更重要的是,我们建议用新型操作员替换标准的正交投影仪,以确保最终解决方案满足盒子约束,同时降低每个迭代处到达的中间点属于盒子边界的概率属于目标函数的雅各布式的边界。在实用方案中显示了所提出的方法的有效性,该方案涉及化学反应网络建模结直肠癌细胞的信号网络。具体而言,在这种情况下,所提出的算法被证明比经典的动力学方法更快,更准确,其中将渐近稳定状态计算为与ODES系统相关的cauchy问题的限制点计算的。

In this work we present a fast, globally convergent, iterative algorithm for computing the asymptotically stable states of nonlinear large--scale systems of quadratic autonomous Ordinary Differential Equations (ODEs) modeling, e.g., the dynamic of complex chemical reaction networks. Towards this aim, we reformulate the problem as a box--constrained optimization problem where the roots of a set of nonlinear equations need to be determined. Then, we propose to use a projected Newton's approach combined with a gradient descent algorithm so that every limit point of the sequence generated by the overall algorithm is a stationary point. More importantly, we suggest replacing the standard orthogonal projector with a novel operator that ensures the final solution to satisfy the box constraints while lowering the probability that the intermediate points reached at each iteration belong to the boundary of the box where the Jacobian of the objective function may be singular. The effectiveness of the proposed approach is shown in a practical scenario concerning a chemical reaction network modeling the signaling network of colorectal cancer cells. Specifically, in this scenario the proposed algorithm is proven to be faster and more accurate than a classical dynamical approach where the asymptotically stable states are computed as the limit points of the flux of the Cauchy problem associated with the ODEs system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源