论文标题
通过在准备量的通信游戏中,通过连续量子优势对UNSHAR仪器进行了强有力的认证
Robust certification of unsharp instruments through sequential quantum advantages in a prepare-measure communication game
论文作者
论文摘要
通信游戏是旨在展示古典资源量子至高无上的广泛使用工具之一。在此,两个或多个政党合作执行信息处理任务,以实现赢得游戏的最高成功概率。我们在准备量的方案中提出了一个特定的两方通信游戏,该场景依赖于编码任务的特定信息。我们首先证明,量子理论的表现优于经典制备非上下文理论,并且这种通信游戏的最佳量子成功概率可以使Qubit状态和测量的半设备独立认证。此外,我们考虑了量子制备上下文性的顺序共享,并表明两个顺序观察者可以共享量子优势。两个顺序观察者的亚最佳量子优势形成了一个最佳对,该对证明了第一个观察者的Unsharpness参数的唯一值。由于实际实施不可避免地引入了噪声,因此我们设计了一个计划,以证明两位顺序观察者的状态和UNSHARP测量工具的强大认证。
Communication games are one of the widely used tools that are designed to demonstrate quantum supremacy over classical resources. In that, two or more parties collaborate to perform an information processing task to achieve the highest success probability of winning the game. We propose a specific two-party communication game in the prepare-measure scenario that relies on an encoding-decoding task of specific information. We first demonstrate that quantum theory outperforms the classical preparation non-contextual theory, and the optimal quantum success probability of such a communication game enables the semi-device-independent certification of qubit states and measurements. Further, we consider the sequential sharing of quantum preparation contextuality and show that, at most, two sequential observers can share the quantum advantage. The sub-optimal quantum advantages for two sequential observers form an optimal pair that certifies a unique value of the unsharpness parameter of the first observer. Since the practical implementation inevitably introduces noise, we devised a scheme to demonstrate the robust certification of the states and unsharp measurement instruments of both the sequential observers.