论文标题
堆叠工程铁电的超快切换动力学
Ultrafast switching dynamics of the ferroelectric order in stacking-engineered ferroelectrics
论文作者
论文摘要
最近发现的范德华(Van der Waals)双层的铁电性提供了一种非常规的途径,以提高设备的性能。关键参数(例如开关字段和速度)取决于域壁(DWS)的静态和动态特性。从理论上讲,我们从第一原则中探索了堆叠工程的铁电工程中的纹理的性质。我们采用机器学习的潜在模型,提出了大规模原子模拟的堆叠DWS和Moiré结构的结果。我们预测,稳定的铁电状态的开关屏障与平面晶格失真之间的竞争会导致十种纳米的DW宽度。 DWS运动可将单域域的关键铁电交换场减少两个数量级,而高域壁速度允许域在picsecond-timesscale上切换。与常规的铁电(或铁磁体)相比,优越的性能可能会导致超快和省电的非易失性记忆。通过将双层扭曲成堆叠的莫伊尔结构,由于DWS在超低电场下移动,因此铁电转换为超准子。
The recently discovered ferroelectricity of van der Waals bilayers offers an unconventional route to improve the performance of devices. Key parameters such as switching field and speed depend on the static and dynamic properties of domain walls (DWs). Here we theoretically explore the properties of textures in stacking-engineered ferroelectrics from first principles. Employing a machine-learning potential model, we present results of large-scale atomistic simulations of stacking DWs and Moiré structure of boron nitride bilayers. We predict that the competition between the switching barrier of stable ferroelectric states and the in-plane lattice distortion leads to a DW width of the order of ten nanometers. DWs motion reduces the critical ferroelectric switching field of a monodomain by two orders of magnitude, while high domain-wall velocities allow domain switching on a picosecond-timescale. The superior performance compared to conventional ferroelectrics (or ferromagnets) may enable ultrafast and power-saving non-volatile memories. By twisting the bilayer into a stacking Moiré structure, the ferroelectric transforms into a super-paraelectric since DWs move under ultralow electric fields.