论文标题

多模式野外火烟检测

Multimodal Wildland Fire Smoke Detection

论文作者

Baldota, Siddhant, Ramaprasad, Shreyas Anantha, Bhamra, Jaspreet Kaur, Luna, Shane, Ramachandra, Ravi, Zen, Eugene, Kim, Harrison, Crawl, Daniel, Perez, Ismael, Altintas, Ilkay, Cottrell, Garrison W., Nguyen, Mai H.

论文摘要

研究表明,气候变化会产生较高的温度和较干燥的条件,从而导致野火较长,并增加了美国的野火风险。这些因素又导致近年来野火的频率,程度和严重程度的增加。鉴于野外大火对人们,财产,野生动植物和环境造成的危险,因此有一个迫切需要提供有效野火管理的工具。早期发现野火对于最大程度地减少潜在的灾难性破坏至关重要。在本文中,我们介绍了在Smokeynet中整合多个数据源的工作,Smokeynet是一种深度学习模型,使用时空信息来检测荒地火灾中的烟雾。相机图像数据与天气传感器的测量集成在一起,并通过Smokeynet处理以创建多模式野外火烟探测系统。我们提出了我们的结果,以多模式数据与单个数据源的准确性和检测时间进行比较。 Smokeynet只需几分钟即可进行时间检测,就可以用作自动的早期通知系统,从而为打击破坏性野火提供了有用的工具。

Research has shown that climate change creates warmer temperatures and drier conditions, leading to longer wildfire seasons and increased wildfire risks in the United States. These factors have in turn led to increases in the frequency, extent, and severity of wildfires in recent years. Given the danger posed by wildland fires to people, property, wildlife, and the environment, there is an urgency to provide tools for effective wildfire management. Early detection of wildfires is essential to minimizing potentially catastrophic destruction. In this paper, we present our work on integrating multiple data sources in SmokeyNet, a deep learning model using spatio-temporal information to detect smoke from wildland fires. Camera image data is integrated with weather sensor measurements and processed by SmokeyNet to create a multimodal wildland fire smoke detection system. We present our results comparing performance in terms of both accuracy and time-to-detection for multimodal data vs. a single data source. With a time-to-detection of only a few minutes, SmokeyNet can serve as an automated early notification system, providing a useful tool in the fight against destructive wildfires.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源