论文标题

前向正交偏差GMM和没有大样本偏见

Forward Orthogonal Deviations GMM and the Absence of Large Sample Bias

论文作者

Phillips, Robert F.

论文摘要

众所周知,当时间段($ t $)与横截面单元的数量($ n $)相比,动态面板数据回归的广义方法(GMM)估计器可能会有很大的偏差。偏见归因于使用许多仪器变量。本文表明,如果以$ t $比$ t^{1/2} $慢的$ t $中使用的最大仪器变量数量增加,那么利用远期正交偏差(FOD)变换的GMM估计器没有划定的差异,无论其相对$ t $的快速增加了$ t $的差异。该结论特定于使用FOD变换。当使用其他转换来消除固定效果时,不一定适用类似的结论。提供了说明分析结果的蒙特卡洛证据。

It is well known that generalized method of moments (GMM) estimators of dynamic panel data regressions can have significant bias when the number of time periods ($T$) is not small compared to the number of cross-sectional units ($n$). The bias is attributed to the use of many instrumental variables. This paper shows that if the maximum number of instrumental variables used in a period increases with $T$ at a rate slower than $T^{1/2}$, then GMM estimators that exploit the forward orthogonal deviations (FOD) transformation do not have asymptotic bias, regardless of how fast $T$ increases relative to $n$. This conclusion is specific to using the FOD transformation. A similar conclusion does not necessarily apply when other transformations are used to remove fixed effects. Monte Carlo evidence illustrating the analytical results is provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源