论文标题

特征知情的神经网络,用于前进和逆双曲线问题

Characteristics-Informed Neural Networks for Forward and Inverse Hyperbolic Problems

论文作者

Braga-Neto, Ulisses

论文摘要

我们提出了特征知识的神经网络(CINN),这是一种简单有效的机器学习方法,用于解决涉及双曲线PDE的前进和反问题。像物理知识的神经网络(PINN)一样,CINN是具有通用近似功能的无网机学习求解器。与Pinn通过多部分损耗函数轻轻地强制执行PDE,CINN通过添加特征性层来编码PDE在通用深层神经网络中的特征。该神经网络接受了通常的MSE数据拟合回归损失的训练,并且不需要搭配点上的剩余损失。这会导致更快的训练,并可以避免对多部分PINN损失功能的梯度下降优化的众所周知的病理。本文的重点是线性传输现象,在这种情况下,表明,如果可以准确求解特征ODE,那么CINN的输出也是PDE的精确溶液,即使在初始化时也可以防止非物理溶液的发生。此外,cinn也可以通过软惩罚限制进行训练,例如定期或诺伊曼边界条件,而不会丢失输出能够自动满足PDE的属性。我们还提出了一种将CINN方法扩展到PDE的线性双曲系统的体系结构。可以使用标准深度学习软件从示例数据端到端培训所有提议的cinn架构。使用简单的对流方程,一个僵硬的周期性对流方程和声学问题进行的实验,其中使用来自一个字段的数据来预测另一个领域,表明CINN能够提高基线PINN的准确性,在某些情况下,在某些情况下,cinn可以通过相当大的差距来提高,同时也可以更快地训练和避免使用非态度的方法。还简要讨论了非线性PDE的扩展。

We propose characteristics-informed neural networks (CINN), a simple and efficient machine learning approach for solving forward and inverse problems involving hyperbolic PDEs. Like physics-informed neural networks (PINN), CINN is a meshless machine learning solver with universal approximation capabilities. Unlike PINN, which enforces a PDE softly via a multi-part loss function, CINN encodes the characteristics of the PDE in a general-purpose deep neural network by adding a characteristic layer. This neural network is trained with the usual MSE data-fitting regression loss and does not require residual losses on collocation points. This leads to faster training and can avoid well-known pathologies of gradient descent optimization of multi-part PINN loss functions. This paper focuses on linear transport phenomena, in which case it is shown that, if the characteristic ODEs can be solved exactly, then the output of a CINN is an exact solution of the PDE, even at initialization, preventing the occurrence of non-physical solutions. In addition, a CINN can also be trained with soft penalty constraints that enforce, for example, periodic or Neumman boundary conditions, without losing the property that the output satisfies the PDE automatically. We also propose an architecture that extends the CINN approach to linear hyperbolic systems of PDEs. All CINN architectures proposed here can be trained end-to-end from sample data using standard deep learning software. Experiments with the simple advection equation, a stiff periodic advection equation, and an acoustics problem where data from one field is used to predict the other, unseen field, indicate that CINN is able to improve on the accuracy of the baseline PINN, in some cases by a considerable margin, while also being significantly faster to train and avoiding non-physical solutions. An extension to nonlinear PDEs is also briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源