论文标题
对气候网络的热带气旋标记的两个局部聚类系数公式的比较统计研究
Comparative statistical study of two local clustering coefficient formulations as tropical cyclone markers for climate networks
论文作者
论文摘要
我们引入了用于加权相关网络的局部聚类系数的新公式。这种新的表述基于先前在神经科学环境中介绍的定义,旨在补偿间接相互作用引起的虚假相关性。我们通过替换Pearson的成对相关系数和三方部分相关系数来进一步修改此定义。这减少了统计样本量的要求以计算相关性,这转化为使用较短的时间窗口,从而转化为实时气候网络分析的响应时间较短。我们构建了平均海平面压力波动的不断发展的气候网络,并分析了这些网络中局部聚类系数的异常。我们开发了一种广泛适用的统计方法,用于研究在空间不均匀的地理参与的多元时间序列和二进制值的时空数据(或该表示形式可还原为此表示的其他数据)之间的关联,并使用它比较了新建议的局部聚类系数(用于这些量表的范围)(用于量表的范围)(以便对这些范围的范围)进行比较(以便在这些范围内的范围)(以供这些量表中的一个范围)(以供这些范围的相关性),以供这些范围的范围(以供这些范围的范围划分的范围,以供涉及范围的范围,供这些范围的相关性,以供涉及范围的范围,以供这些范围插入范围的范围。网络到热带气旋。因此,我们证实了先前的观察结果,即热带气旋与局部聚类系数的异常值相关,并确认新的配方显示出更强的关联。
We introduce a new formulation of local clustering coefficient for weighted correlation networks. This new formulation is based upon a definition introduced previously in the neuroscience context and aimed at compensating for spurious correlations caused by indirect interactions. We modify this definition further by replacing Pearson's pairwise correlation coefficients and three-way partial correlation coefficients by the respective Kendall's rank correlations. This reduces statistical sample size requirements to compute the correlations, which translates into the possibility of using shorter time windows and hence into a shorter response time of the real-time climate network analysis. We construct evolving climate networks of mean sea level pressure fluctuations and analyze anomalies of local clustering coefficient in these networks. We develop a broadly applicable statistical methodology to study association between spatially inhomogeneous georeferenced multivariate time series and binary-valued spatiotemporal data (or other data reducible to this representation) and use it to compare the newly proposed formulation of local clustering coefficient (for weighted correlation networks) to the conventional one (for unweighted graphs) in terms of the association of these measures in climate networks to tropical cyclones. Thus we substantiate the previously made observation that tropical cyclones are associated with anomalously high values of local clustering coefficient, and confirm that the new formulation shows a stronger association.