论文标题
部分可观测时空混沌系统的无模型预测
Plasmonic properties of individual gallium nanoparticles
论文作者
论文摘要
甘露是一种等离子材料,可提供紫外线,可调节近红外可调性,易于扩展和可扩展的制备以及纳米颗粒的良好稳定性。在我们的贡献中,我们在实验上证明了单个凝固纳米颗粒的形状和大小与其光学特性之间的联系。为此,我们利用扫描透射电子显微镜与电子能量损耗光谱结合。直径在10 nm至200 nm之间的透镜状凝固型纳米颗粒直接在氮化硅膜上生长,使用在超高真空条件下运行的内部发育的积液细胞。我们在实验上证明了它们支持局部的表面等离子体共振,并且可以通过从紫外线到近红外光谱区域调整其偶极模式。使用逼真的粒子形状和大小的数值模拟支持测量值。我们的结果为未来的甘露纳米颗粒(例如在能量收集中阳光的高光吸收或紫外发射器的等离子体增强发光)的应用开辟了道路。
Gallium is a plasmonic material offering ultraviolet to near-infrared tunability, facile and scalable preparation, and good stability of nanoparticles. In our contribution, we experimentally demonstrate the link between the shape and size of individual gallium nanoparticles and their optical properties. To this end, we utilize scanning transmission electron microscopy combined with electron energy loss spectroscopy. Lens-shaped gallium nanoparticles with a diameter between 10 nm and 200 nm were grown directly on a silicon nitride membrane using an in-house developed effusion cell operated at ultra-high vacuum conditions. We have experimentally proved that they support localized surface plasmon resonances and their dipole mode can be tuned through their size from ultraviolet to near-infrared spectral region. The measurements are supported by numerical simulations using realistic particle shapes and sizes. Our results open the way for future applications of gallium nanoparticles such as hyperspectral absorption of sunlight in energy harvesting or plasmon-enhanced luminescence of ultraviolet emitters.