论文标题

部分可观测时空混沌系统的无模型预测

Attentive Deep Neural Networks for Legal Document Retrieval

论文作者

Nguyen, Ha-Thanh, Phi, Manh-Kien, Ngo, Xuan-Bach, Tran, Vu, Nguyen, Le-Minh, Tu, Minh-Phuong

论文摘要

法律文本检索是在各种法律文本处理任务中的关键组成部分,例如法律问题答案,法律案件的核心和法律法律检索。法律文本检索的表现在很大程度上取决于询问和法律文件的文本表示。基于良好的表示,法律文本检索模型可以有效地将查询与其相关文档匹配。由于法律文件通常包含长文章,并且只有某些部分与查询有关,因此代表此类文档的现有模型是一个挑战。在本文中,我们研究了细心神经网络的文本表示法对法规法律的检索。我们提出了一种使用带有注意机制的深神经网络的通用方法。基于它,我们开发了两个分层体系结构,并稀疏地关注代表长句子和文章,并将其命名为CNN和Paraformer。这些方法在英语,日语和越南人的不同大小和特征的数据集上进行评估。实验结果表明:i)在数据集和语言之间的检索性能方面,细心的神经方法基本上优于非神经方法; ii)预估计的基于变压器的模型以高计算复杂性为代价在小数据集上获得了更好的精度,而重量较轻的CNN可以在大型数据集上实现更好的精度; iii)我们提出的围形象征器的表现优于Coliee数据集上的最先进方法,在Top-N检索任务中获得了最高的召回率和F2分数。

Legal text retrieval serves as a key component in a wide range of legal text processing tasks such as legal question answering, legal case entailment, and statute law retrieval. The performance of legal text retrieval depends, to a large extent, on the representation of text, both query and legal documents. Based on good representations, a legal text retrieval model can effectively match the query to its relevant documents. Because legal documents often contain long articles and only some parts are relevant to queries, it is quite a challenge for existing models to represent such documents. In this paper, we study the use of attentive neural network-based text representation for statute law document retrieval. We propose a general approach using deep neural networks with attention mechanisms. Based on it, we develop two hierarchical architectures with sparse attention to represent long sentences and articles, and we name them Attentive CNN and Paraformer. The methods are evaluated on datasets of different sizes and characteristics in English, Japanese, and Vietnamese. Experimental results show that: i) Attentive neural methods substantially outperform non-neural methods in terms of retrieval performance across datasets and languages; ii) Pretrained transformer-based models achieve better accuracy on small datasets at the cost of high computational complexity while lighter weight Attentive CNN achieves better accuracy on large datasets; and iii) Our proposed Paraformer outperforms state-of-the-art methods on COLIEE dataset, achieving the highest recall and F2 scores in the top-N retrieval task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源