论文标题
在复曲曲诺纤维上
On toric Fano fibrations
论文作者
论文摘要
A. Borisov分类为有限的许多系列,一组具有复曲率$ \ q $的细菌的同构类别,具有固定尺寸的奇异性,并且在从下面界定的特殊点上的固定点差异最小。我们将此分类扩展到感谢您的Foric Fano振动的细菌,可能不是$ \ q $ - factorial。作为应用程序,我们在图火中验证了V. V. Shokurov提出的关于有限补充的存在的猜想。
A. Borisov classified into finitely many series the set of isomorphism classes of germs of toric $\Q$-factorial singularities, of fixed dimension and with minimal log discrepancy over the special point bounded from below by a fixed real number. We extend this classification to germs of toric Fano fibrations, possibly not $\Q$-factorial. As an application, we verify in the toric setting a conjecture proposed by V. V. Shokurov on the existence of bounded complements.