论文标题

Synclay:来自定制蜂窝布局的组织学图像的交互式合成

SynCLay: Interactive Synthesis of Histology Images from Bespoke Cellular Layouts

论文作者

Deshpande, Srijay, Dawood, Muhammad, Minhas, Fayyaz, Rajpoot, Nasir

论文摘要

组织学图像的自动合成在计算病理学中具有多种潜在应用。但是,没有现有方法可以使用定制的蜂窝布局或用户定义的组织学参数生成逼真的组织图像。在这项工作中,我们提出了一个名为Synclay(来自蜂窝布局的合成)的新型框架,该框架可以从用户定义的蜂窝布局以及带注释的细胞边界构建现实且高质量的组织学图像。基于定制的细胞布局通过提出的框架产生组织图像,使用户可以通过不同类型的细胞的任意拓扑布置产生不同的组织学模式。同步产生的合成图像可以帮助研究肿瘤微环境中存在的不同类型细胞的作用。此外,它们可以通过最大程度地减少数据不平衡的影响来帮助平衡组织图像中细胞计数的分布,从而设计准确的细胞组成预测因子。我们以对抗性方式训练同步物,并将核分割和分类模型整合在其训练中,以完善核结构并与合成图像结合产生核面具。在推断期间,我们将模型与另一个参数模型相结合,用于产生结肠图像和相关的细胞计数作为注释,鉴于不同细胞的分化和细胞密度的等级。我们定量评估生成的图像,并报告训练有素的病理学家的反馈,他们将现实主义得分分配给了框架生成的一组图像。所有病理学家在合成图像中的平均现实主义得分与真实图像一样高。我们还表明,使用框架生成的合成数据增强有限的实际数据可以显着提高细胞组成预测任务的预测性能。

Automated synthesis of histology images has several potential applications in computational pathology. However, no existing method can generate realistic tissue images with a bespoke cellular layout or user-defined histology parameters. In this work, we propose a novel framework called SynCLay (Synthesis from Cellular Layouts) that can construct realistic and high-quality histology images from user-defined cellular layouts along with annotated cellular boundaries. Tissue image generation based on bespoke cellular layouts through the proposed framework allows users to generate different histological patterns from arbitrary topological arrangement of different types of cells. SynCLay generated synthetic images can be helpful in studying the role of different types of cells present in the tumor microenvironmet. Additionally, they can assist in balancing the distribution of cellular counts in tissue images for designing accurate cellular composition predictors by minimizing the effects of data imbalance. We train SynCLay in an adversarial manner and integrate a nuclear segmentation and classification model in its training to refine nuclear structures and generate nuclear masks in conjunction with synthetic images. During inference, we combine the model with another parametric model for generating colon images and associated cellular counts as annotations given the grade of differentiation and cell densities of different cells. We assess the generated images quantitatively and report on feedback from trained pathologists who assigned realism scores to a set of images generated by the framework. The average realism score across all pathologists for synthetic images was as high as that for the real images. We also show that augmenting limited real data with the synthetic data generated by our framework can significantly boost prediction performance of the cellular composition prediction task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源