论文标题

使用变分算法从时间动态学习的哈密顿学习

Hamiltonian learning from time dynamics using variational algorithms

论文作者

Gupta, Rishabh, Selvarajan, Raja, Sajjan, Manas, Levine, Raphael D., Kais, Sabre

论文摘要

量子系统的哈密顿量通过Schrodinger方程来控制系统的动力学。在本文中,哈密顿人使用在形成时间序列数据集的随机状态上使用可测量的状态重建。时间传播是通过Trotterization实现的,并通过在量子电路上计算的梯度进行了优化。我们通过在未用于优化的随机选择状态下重现未见可观察物的动力来验证输出。与试图利用哈密顿量的结构/属性的现有技术不同,我们的计划是一般的,并且提供了可以使用哪些观察结果或初始状态的自由,而在实施方面仍然保持有效。我们将协议扩展到进行量子状态学习,以解决针对几种汉密尔顿动力学生成的观察力的时间序列数据进行状态学习的反向问题。我们展示了有关涉及XX,ZZ耦合以及横向领域的iSing Hamiltonians的汉密尔顿人的结果,并提出了一种分析方法,用于学习由SU(3)组的发电机组成的哈密顿人。本文很可能为在量子机学习算法的背景下使用哈密顿学习进行时间序列预测铺平了道路。

The Hamiltonian of a quantum system governs the dynamics of the system via the Schrodinger equation. In this paper, the Hamiltonian is reconstructed in the Pauli basis using measurables on random states forming a time series dataset. The time propagation is implemented through Trotterization and optimized variationally with gradients computed on the quantum circuit. We validate our output by reproducing the dynamics of unseen observables on a randomly chosen state not used for the optimization. Unlike the existing techniques that try and exploit the structure/properties of the Hamiltonian, our scheme is general and provides freedom with regard to what observables or initial states can be used while still remaining efficient with regard to implementation. We extend our protocol to doing quantum state learning where we solve the reverse problem of doing state learning given time series data of observables generated against several Hamiltonian dynamics. We show results on Hamiltonians involving XX, ZZ couplings along with transverse field Ising Hamiltonians and propose an analytical method for the learning of Hamiltonians consisting of generators of the SU(3) group. This paper is likely to pave the way toward using Hamiltonian learning for time series prediction within the context of quantum machine learning algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源