论文标题
使用生成的对抗网络进行近频谱共享的传感折衷方案
Sensing-Throughput Tradeoffs with Generative Adversarial Networks for NextG Spectrum Sharing
论文作者
论文摘要
Spectrum共存对于下一代(NextG)系统与现任(主要)用户共享光谱并满足带宽的需求是必不可少的。一个例子是3.5 GHz公民宽带无线电服务(CBRS)频段,其中5G及以后的通信系统需要感知频谱,然后在现有用户(例如雷达)不传输时,以机会主义的方式访问渠道。为此,需要一个基于深层神经网络的高保真分类器才能使误导(以保护现有用户)和较低的虚假警报(以实现NextG的高吞吐量)。在动态无线环境中,分类器只能在有限的时间内使用,即连贯时间。此期间的一部分用于学习收集感应结果并训练分类器,其余部分用于传输。在频谱共享系统中,感应时间和传输时间之间存在众所周知的权衡。虽然增加感应时间可以提高频谱感知精度,但数据传输的剩余时间较小。在本文中,我们提出了一种生成的对抗网络(GAN)的方法,以生成合成感应结果,以增加深度学习分类器的训练数据,以便可以减少感应时间(因此可以增加传输时间),同时保持分类器的高精度。我们考虑添加性白色高斯噪声(AWGN)和瑞利频道,并表明这种基于GAN的方法可以显着改善对高优先级用户的保护和NextG用户的吞吐量(在Rayleigh频道中更多的是AWGN频道)。
Spectrum coexistence is essential for next generation (NextG) systems to share the spectrum with incumbent (primary) users and meet the growing demand for bandwidth. One example is the 3.5 GHz Citizens Broadband Radio Service (CBRS) band, where the 5G and beyond communication systems need to sense the spectrum and then access the channel in an opportunistic manner when the incumbent user (e.g., radar) is not transmitting. To that end, a high-fidelity classifier based on a deep neural network is needed for low misdetection (to protect incumbent users) and low false alarm (to achieve high throughput for NextG). In a dynamic wireless environment, the classifier can only be used for a limited period of time, i.e., coherence time. A portion of this period is used for learning to collect sensing results and train a classifier, and the rest is used for transmissions. In spectrum sharing systems, there is a well-known tradeoff between the sensing time and the transmission time. While increasing the sensing time can increase the spectrum sensing accuracy, there is less time left for data transmissions. In this paper, we present a generative adversarial network (GAN) approach to generate synthetic sensing results to augment the training data for the deep learning classifier so that the sensing time can be reduced (and thus the transmission time can be increased) while keeping high accuracy of the classifier. We consider both additive white Gaussian noise (AWGN) and Rayleigh channels, and show that this GAN-based approach can significantly improve both the protection of the high-priority user and the throughput of the NextG user (more in Rayleigh channels than AWGN channels).