论文标题

数据驱动的COVID-19中建筑物中的控制:一种加强学习方法

Data-driven control of COVID-19 in buildings: a reinforcement-learning approach

论文作者

Hosseinloo, Ashkan Haji, Nabi, Saleh, Hosoi, Anette, Dahleh, Munther A.

论文摘要

除了公共卫生危机外,Covid-19的大流行还导致了工作场所的关闭和关闭,估计总成本超过16万亿美元。鉴于一个普通人在建筑物和室内环境中花费的长时间,本研究提出了数据驱动的控制策略,以设计最佳的室内气流,以最大程度地减少乘员在建筑环境中的病毒病原体的暴露。提出了一个通用控制框架,用于设计最佳速度字段和近端策略优化,并采用了增强学习算法来以数据驱动的方式解决控制问题。同一框架用于最佳放置消毒剂,以中和病毒病原体,以替代水流设计,而后者实际上是不可行的或难以实施的。我们通过仿真实验表明,控制代理在合理时间内两种情况下都学习了最佳策略。本研究中提出的数据驱动的控制框架将通过为改进的方法设计而在设计特定病例的感染控制指南中奠定基础,从而获得重大的社会和经济利益,这些方法可以通过负担得起的通风设备和消毒剂来实现。

In addition to its public health crisis, COVID-19 pandemic has led to the shutdown and closure of workplaces with an estimated total cost of more than $16 trillion. Given the long hours an average person spends in buildings and indoor environments, this research article proposes data-driven control strategies to design optimal indoor airflow to minimize the exposure of occupants to viral pathogens in built environments. A general control framework is put forward for designing an optimal velocity field and proximal policy optimization, a reinforcement learning algorithm is employed to solve the control problem in a data-driven fashion. The same framework is used for optimal placement of disinfectants to neutralize the viral pathogens as an alternative to the airflow design when the latter is practically infeasible or hard to implement. We show, via simulation experiments, that the control agent learns the optimal policy in both scenarios within a reasonable time. The proposed data-driven control framework in this study will have significant societal and economic benefits by setting the foundation for an improved methodology in designing case-specific infection control guidelines that can be realized by affordable ventilation devices and disinfectants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源