论文标题

DAE形式:双重注意力引导的有效变压器用于医学图像分割

DAE-Former: Dual Attention-guided Efficient Transformer for Medical Image Segmentation

论文作者

Azad, Reza, Arimond, René, Aghdam, Ehsan Khodapanah, Kazerouni, Amirhossein, Merhof, Dorit

论文摘要

由于能够建模远程依赖性,变形金刚最近引起了计算机视觉域的关注。但是,自我发项机制是变压器模型的核心部分,通常遭受二次计算复杂性相对于令牌数量。许多体系结构试图通过将自我发挥机制限制为地方区域或重新设计令牌化过程来降低模型的复杂性。在本文中,我们提出了DAE形式,这是一种新颖的方法,旨在通过有效设计自我注意的机制来提供替代的观点。更具体地说,我们重新制定了自我发挥的机制,以在整个特征维度上捕获空间和渠道关系,同时保持计算有效。此外,我们通过包括交叉意见模块来重新设计跳过连接路径,以确保功能可重复使用并增强本地化功能。我们的方法优于多器官心脏和皮肤病变细分数据集的最先进方法,而无需进行预训练。该代码可在https://github.com/mindflow-institue/daeformer上公开获取。

Transformers have recently gained attention in the computer vision domain due to their ability to model long-range dependencies. However, the self-attention mechanism, which is the core part of the Transformer model, usually suffers from quadratic computational complexity with respect to the number of tokens. Many architectures attempt to reduce model complexity by limiting the self-attention mechanism to local regions or by redesigning the tokenization process. In this paper, we propose DAE-Former, a novel method that seeks to provide an alternative perspective by efficiently designing the self-attention mechanism. More specifically, we reformulate the self-attention mechanism to capture both spatial and channel relations across the whole feature dimension while staying computationally efficient. Furthermore, we redesign the skip connection path by including the cross-attention module to ensure the feature reusability and enhance the localization power. Our method outperforms state-of-the-art methods on multi-organ cardiac and skin lesion segmentation datasets without requiring pre-training weights. The code is publicly available at https://github.com/mindflow-institue/DAEFormer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源