论文标题

21世纪的Heliophysics发现工具:2020-2050的数据科学和机器学习结构和建议

Heliophysics Discovery Tools for the 21st Century: Data Science and Machine Learning Structures and Recommendations for 2020-2050

论文作者

McGranaghan, R. M., Thompson, B., Camporeale, E., Bortnik, J., Bobra, M., Lapenta, G., Wing, S., Poduval, B., Lotz, S., Murray, S., Kirk, M., Chen, T. Y., Bain, H. M., Riley, P., Tremblay, B., Cheung, M., Delouille, V.

论文摘要

三个要点:1。数据科学(DS)对Heliophysics越来越重要。 2。热物理学科学发现的方法将不断发展,需要使用严格应用并且能够支持发现的学习技术[例如,机器学习(ML)]; 3。要随数据,技术和劳动力变化的速度增长,Heliophysics需要一种新的方法来代表知识。

Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源