论文标题

时频空间的符号分析

Symplectic Analysis of Time-Frequency Spaces

论文作者

Cordero, Elena, Giacchi, Gianluca

论文摘要

在加权调制空间的定义中,我们介绍了不同的符号观点,$ m^{p,q} _m(\ Mathbb {r}^d)$和加权的Wiener amalgam spaces $ w(\ Mathcal {f}所有经典的时频表示,例如短时傅立叶变换(STFT),$τ$ - 符号分布和歧义功能,都可以写成元素wigner wigner分布$μ(\ nathcal {a})(f \ otimes \ otimes \ bar {g})$(\ bar {g})$,$ usp $μ(\ math)and a calcal和a calcal calcal and a a(a) $ \ Mathcal {a} $是关联的符号矩阵。也就是说,可以将时间频表示为元容器的图像,这成为时频分析的真正主角。在[E. Cordero和L. Rodino(2022)“通过互合式表示和对Schrödinger方程的应用对调制空间的表征”,Arxiv:2204.14124],作者认为,任何满足所谓的“可变性”条件可以替换调制空间中的STFT的任何转移WIGNER分布都可以替换STFT。在这项工作中,我们证明单独的可转换性是不够的,但是必须通过三角形条件来补充这种表征,而较低三角形的特性则可以为维也纳amalgam空间发挥作用。偏移性属性是必要的:ryhaczek和和共轭ryhaczek分布不可移动,并且未能使上述空间的表征失败。我们还展示了没有上跨性别条件的可移动分布的示例,这些分布没有定义调制空间。最后,我们提供了特征在于调制空间的时频表示的新家族,目的是用其他原子代替允许以不同方式分解信号的时间频率转移,并且在应用程序中可能会带来新的结果。

We present a different symplectic point of view in the definition of weighted modulation spaces $M^{p,q}_m(\mathbb{R}^d)$ and weighted Wiener amalgam spaces $W(\mathcal{F} L^p_{m_1},L^q_{m_2})(\mathbb{R}^d)$. All of the classical time-frequency representations, such as the short-time Fourier transform (STFT), the $τ$-Wigner distributions and the ambiguity function, can be written as metaplectic Wigner distributions $μ(\mathcal{A})(f\otimes \bar{g})$, where $μ(\mathcal{A})$ is the metaplectic operator and $\mathcal{A}$ is the associated symplectic matrix. Namely, time-frequency representations can be represented as images of metaplectic operators, which become the real protagonists of time-frequency analysis. In [E. Cordero and L. Rodino (2022) "Characterization of Modulation Spaces by symplectic representations and applications to Schrödinger equations", arXiv:2204.14124], the authors suggest that any metaplectic Wigner distribution that satisfies the so-called "shift-invertibility" condition can replace the STFT in the definition of modulation spaces. In this work, we prove that shift-invertibility alone is not sufficient, but it has to be complemented by an upper-triangularity condition for this characterization to hold, whereas a lower-triangularity property comes in to play for Wiener amalgam spaces. The shift-invertibility property is necessary: Ryhaczek and and conjugate Ryhaczek distributions are not shift-invertible and they fail the characterization of the above spaces. We also exhibit examples of shift-invertible distributions without upper-tryangularity condition which do not define modulation spaces. Finally, we provide new families of time-frequency representations that characterize modulation spaces, with the purpose of replacing the time-frequency shifts with other atoms that allow to decompose signals differently, with possible new outcomes in applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源