论文标题

使用有效的世界线理论在旋转二进制黑洞中对地平线吸收进行建模

Modeling horizon absorption in spinning binary black holes using effective worldline theory

论文作者

Saketh, M. V. S., Steinhoff, Jan, Vines, Justin, Buonanno, Alessandra

论文摘要

二元系统中黑洞(BHS)的质量和自旋可能会因重力波(GW)的插入水平向下而变化。对于旋转BHS,这种效应以2.5后Newtonian(PN)的顺序与无穷大的领先能量通量相比。目前,在4pn顺序(相对1.5pn顺序)的测试体限制中,文献中的文献中存在差异。在这里,我们在有效的全球理论中,将其作为潮汐加热建模,该理论的旋转粒子配备了潮汐诱导的四极杆和八振矩矩。我们将潮汐响应与散射场景中Teukolsky方程的分析解相匹配,并获得质量和自旋进化的一般公式。然后,我们专门研究对齐的旋转 - Quasi-Circular二进制文件,从4PN顺序获得了对GW逐渐相应的相应贡献。重要的是,我们发现,由于Ligo-Virgo-Kagra探测器观察到的质量的Horizo​​n通量,GW循环的数量比以相同的PN顺序相吻合的其他贡献小约2-3个数量级。此外,在测试体限制中,我们发现与BH扰动理论先前获得的结果完全一致,而在赤道圆形轨道中的质量很小,被视为扰动KERR度量的来源。因此,我们在上一个差异的一侧称重。

The mass and spin of black holes (BHs) in binary systems may change due to the infall of gravitational-wave (GW) energy down the horizons. For spinning BHs, this effect enters at 2.5 post-Newtonian (PN) order relative to the leading-order energy flux at infinity. There is currently a discrepancy in the literature in the expressions of these horizon fluxes in the test-body limit at 4PN order (relative 1.5PN order). Here, we model the horizon absorption as tidal heating in an effective worldline theory of a spinning particle equipped with tidally-induced quadrupole and octupole moments. We match the tidal response to analytic solutions of the Teukolsky equation in a scattering scenario, and obtain general formulae for the evolution of mass and spin. We then specialize to the case of aligned-spin--quasi-circular binaries, obtaining the corresponding contributions to the GW phasing through 4PN order. Importantly, we find that the number of GW cycles due to horizon fluxes with masses observed by LIGO-Virgo-KAGRA detectors is about 2-3 orders of magnitude smaller than the other contributions to the phasing at the same PN order. Furthermore, in the test-body limit, we find full agreement with results obtained earlier from BH perturbation theory, with a small mass in an equatorial circular orbit treated as a source perturbing the Kerr metric. Thus, we weigh in on one side of the previous discrepancy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源