论文标题

无多种品种的k多项式

K-polynomials of multiplicity-free varieties

论文作者

Castillo, Federico, Cid-Ruiz, Yairon, Mohammadi, Fatemeh, Montaño, Jonathan

论文摘要

我们描述了在多主体设置中的无多种品种的扭曲$ k $多物种。更确切地说,对于无多重性品种,我们表明扭曲的$ K $ - 多种状态的支持是一种广义的多膜肌。作为应用,我们表明,线性多膜化的Möbius函数的支持是一种广义的多层化学,并且我们在零schubert多项式的情况下定居于Grothendieck多项式的Monical,Tokcan和Yong的猜想。

We describe the twisted $K$-polynomial of multiplicity-free varieties in a multiprojective setting. More precisely, for multiplicity-free varieties, we show that the support of the twisted $K$-polynomial is a generalized polymatroid. As applications, we show that the support of the Möbius function of a linear polymatroid is a generalized polymatroid, and we settle a conjecture of Monical, Tokcan and Yong regarding Grothendieck polynomials for the case of zero-one Schubert polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源