论文标题

标量,费米子和超对称场理论在d+1维度中具有子系统对称性

Scalar, fermionic and supersymmetric field theories with subsystem symmetries in d+1 dimensions

论文作者

Honda, Masazumi, Nakanishi, Taiichi

论文摘要

我们研究了各种具有异国情调的符号对称性对称性对称性的非权威性领域理论,这些对称性最近在分布剂的背景下引起了很多关注。我们从$ d+1 $尺寸的标量理论开始,并讨论其在文学中研究的属性,以$ d \ leq 3 $(例如自duality,真空结构,'t Hooft Anomaly,Anomaly Proffrow and Lattice正常化)。接下来,我们研究一种称为手性$ ϕ $理论的理论,它是带有子系统对称性的手性玻色子的类似物。然后,我们讨论包括具有子系统对称性的费米斯的理论。我们首先构建了$ ϕ $理论的超对称版本并放下其骨骼部分,这使我们进入了一个纯粹的费米斯理论,该理论具有子系统对称性,称为$ψ$ - 理论。我们认为,$ψ$理论的晶格正规化通常遭受了加倍问题的类似物,正如先前在$ d = 3 $案例中指出的那样。我们提出了一个威尔逊·费米昂(Wilson Fermion)的类似物,以避免``加倍''问题。我们还超对称性手性$ ϕ $ - 理论并再次放弃了骨气部分。我们最终使我们纯粹地讨论了这些理论的真空结构,并发现它们是无限期地变性的。

We study various non-relativistic field theories with exotic symmetries called subsystem symmetries, which have recently attracted much attention in the context of fractons. We start with a scalar theory called $ϕ$-theory in $d+1$ dimensions and discuss its properties studied in literature for $d\leq 3$ such as self-duality, vacuum structure, 't Hooft anomaly, anomaly inflow and lattice regularization. Next we study a theory called chiral $ϕ$-theory which is an analogue of a chiral boson with subsystem symmetries. Then we discuss theories including fermions with subsystem symmetries. We first construct a supersymmetric version of the $ϕ$-theory and dropping its bosonic part leads us to a purely fermionic theory with subsystem symmetries called $ψ$-theory. We argue that lattice regularization of the $ψ$-theory generically suffers from an analogue of doubling problem as previously pointed out in the $d=3$ case. We propose an analogue of Wilson fermion to avoid the ``doubling" problem. We also supersymmetrize the chiral $ϕ$-theory and dropping the bosonic part again gives us a purely fermionic theory. We finally discuss vacuum structures of the theories with fermions and find that they are infinitely degenerate because of spontaneous breaking of subsystem symmetries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源