论文标题

TextBox 2.0:具有预训练语言模型的文本生成库

TextBox 2.0: A Text Generation Library with Pre-trained Language Models

论文作者

Tang, Tianyi, Li, Junyi, Chen, Zhipeng, Hu, Yiwen, Yu, Zhuohao, Dai, Wenxun, Dong, Zican, Cheng, Xiaoxue, Wang, Yuhao, Zhao, Wayne Xin, Nie, Jian-Yun, Wen, Ji-Rong

论文摘要

为了促进有关文本生成的研究,本文介绍了一个全面而统一的库Textbox 2.0,重点是使用预训练的语言模型(PLM)。综上所述,我们的图书馆涵盖了$ 13 $通用的文本生成任务及其相应的$ 83 $数据集,并进一步合并了$ 45 $ PLMS,涵盖了一般,翻译,中文,对话,可控制,蒸馏,提示,提示和轻量级PLM。我们还实施了$ 4 $有效的培训策略,并为从头开始培训的新PLM提供了$ 4 $的生成目标。要统一,我们设计了界面以支持整个研究管道(从数据加载到培训和评估),以确保可以以统一的方式实现每个步骤。尽管功能丰富,但通过友好的Python API或命令行很容易使用我们的库。为了验证我们的图书馆的有效性,我们进行了广泛的实验并示例了四种类型的研究方案。该项目在链接上发布:https://github.com/rucaibox/textbox。

To facilitate research on text generation, this paper presents a comprehensive and unified library, TextBox 2.0, focusing on the use of pre-trained language models (PLMs). To be comprehensive, our library covers $13$ common text generation tasks and their corresponding $83$ datasets and further incorporates $45$ PLMs covering general, translation, Chinese, dialogue, controllable, distilled, prompting, and lightweight PLMs. We also implement $4$ efficient training strategies and provide $4$ generation objectives for pre-training new PLMs from scratch. To be unified, we design the interfaces to support the entire research pipeline (from data loading to training and evaluation), ensuring that each step can be fulfilled in a unified way. Despite the rich functionality, it is easy to use our library, either through the friendly Python API or command line. To validate the effectiveness of our library, we conduct extensive experiments and exemplify four types of research scenarios. The project is released at the link: https://github.com/RUCAIBox/TextBox.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源