论文标题

在加权射影空间上叶的回调的稳定性

Stability of pullbacks of foliations on weighted projective spaces

论文作者

Acea, Javier Gargiulo, Molinuevo, Ariel, Quallbrunn, Federico, Velazquez, Sebastián Lucas

论文摘要

我们展示了一种稳定的定理,用于射影空间上的叶子定理,该定理是在加权投影空间上带有分裂切线捆的叶子的回溯。结果,我们将能够构建相应的叶面空间的许多不可约组件,其中大多数以前是未知的。该结果还为其他叶子家族的稳定性提供了替代性和统一的证据。

We show a stability-type theorem for foliations on projective spaces which arise as pullbacks of foliations with a split tangent sheaf on weighted projective spaces. As a consequence, we will be able to construct many irreducible components of the corresponding spaces of foliations, most of them being previously unknown. This result also provides an alternative and unified proof for the stability of other families of foliations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源