论文标题

用于边缘预测的图神经网络的精制边缘使用

Refined Edge Usage of Graph Neural Networks for Edge Prediction

论文作者

Jin, Jiarui, Wang, Yangkun, Zhang, Weinan, Gan, Quan, Song, Xiang, Yu, Yong, Zhang, Zheng, Wipf, David

论文摘要

最初提出的用于节点分类的图形神经网络(GNN)也激发了许多有关边缘预测的最新作品(又称链接预测)。但是,现有方法缺乏关于经常被忽略的两个任务之间区别的精心设计:(i)边缘仅构成节点分类任务中的拓扑,但可以用作边缘预测任务中的拓扑和监督(即标签); (ii)节点分类对每个单个节点进行了预测,而边缘预测由每个节点确定。为此,我们提出了一个新颖的Edge预测范式,名为Edge-hear感知信息通过神经网络(Empire)。具体而言,我们首先引入了一种边缘分裂技术,以指定每个边缘仅用作拓扑或监督的每个边缘的使用(称为拓扑边缘或监督边缘)。然后,我们开发了一个新的消息传递机制,该机制生成消息以源为节点(通过拓扑边缘)意识到目标节点(通过监督边缘)。为了强调通过监督边缘连接的对和无连接对连接的对之间的差异,我们进一步加权消息以突出显示可以反映差异的相对相对的差异。此外,我们设计了一种新型的负节点对采样技巧,该技巧有效地在监督实例中进行了“硬”负例,并可以显着提高性能。实验结果验证了所提出的方法在多个同质和异质图数据集上有关边缘预测任务的现有最新模型可以显着优于现有的最新模型。

Graph Neural Networks (GNNs), originally proposed for node classification, have also motivated many recent works on edge prediction (a.k.a., link prediction). However, existing methods lack elaborate design regarding the distinctions between two tasks that have been frequently overlooked: (i) edges only constitute the topology in the node classification task but can be used as both the topology and the supervisions (i.e., labels) in the edge prediction task; (ii) the node classification makes prediction over each individual node, while the edge prediction is determinated by each pair of nodes. To this end, we propose a novel edge prediction paradigm named Edge-aware Message PassIng neuRal nEtworks (EMPIRE). Concretely, we first introduce an edge splitting technique to specify use of each edge where each edge is solely used as either the topology or the supervision (named as topology edge or supervision edge). We then develop a new message passing mechanism that generates the messages to source nodes (through topology edges) being aware of target nodes (through supervision edges). In order to emphasize the differences between pairs connected by supervision edges and pairs unconnected, we further weight the messages to highlight the relative ones that can reflect the differences. In addition, we design a novel negative node-pair sampling trick that efficiently samples 'hard' negative instances in the supervision instances, and can significantly improve the performance. Experimental results verify that the proposed method can significantly outperform existing state-of-the-art models regarding the edge prediction task on multiple homogeneous and heterogeneous graph datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源