论文标题
非共线磁性多层中超级旋转运输的理论
Theory of superdiffusive spin transport in noncollinear magnetic multilayers
论文作者
论文摘要
飞秒激光脉冲在薄金属层中诱导的超快消极磁化是由超偏置的热电子电流的流出引起的。这些激光生成的自旋电流可以将界面跨入另一个磁层,并在具有非共线磁化的磁性自旋阀中产生磁化动力学。为了描述此类纳米结构中的超快传输和自旋动力学,我们在这里开发了一般非共线磁多层的超级散发理论。具体而言,我们引入了具有非共线性Ni和Fe磁矩的Al/ni/ru/fe/ru多层系统,并分析了超快速反电磁和自旋转移扭矩如何取决于非共线性。我们采用从头算计算来计算多层界面处热电子的自旋和能量依赖性传输。考虑到在界面上的多个电子散射,并在间隔层中的旋转混合,我们发现激光诱导的Ni层的脱氧化和Fe层的磁化变化在很大程度上取决于其磁化之间的角度。同样,在Ni和Fe层上的自旋转移扭矩,并且在Ni和Fe层中吸收的总自旋动量随着非共线性的量显着变化。 这些结果表明,改变磁性多层中的非共线性量可以有效地控制热电子自旋传输,这可能为实现快速,激光驱动的Spintronic设备开辟了道路。
Ultrafast demagnetization induced by femtosecond laser pulses in thin metallic layers is caused by the outflow of spin-polarized hot electron currents describable by the superdiffusive transport model. These laser-generated spin currents can cross the interface into another magnetic layer and give rise to magnetization dynamics in magnetic spin valves with noncollinear magnetizations. To describe ultrafast transport and spin dynamics in such nanostructures we develop here the superdiffusive theory for general noncollinear magnetic multilayers. Specifically, we introduce an Al/Ni/Ru/Fe/Ru multilayer system with noncollinear Ni and Fe magnetic moments and analyze how the ultrafast demagnetization and spin-transfer torque depend on the noncollinearity. We employ ab initio calculations to compute the spin- and energy-dependent transmissions of hot electrons at the interfaces of the multilayer. Taking into account multiple electron scattering at interfaces and spin mixing in the spacer layer we find that the laser-induced demagnetization of the Ni layer and magnetization change of the Fe layer strongly depend on the angle between their magnetizations. Similarly, the spin-transfer torques on the Ni and Fe layers and the total spin momentum absorbed in the Ni and Fe layer are found to vary markedly with the amount of noncollinearity. These results suggest that changing the amount of noncollinearity in magnetic multilayers one can efficiently control the hot electron spin transport, which may open a way toward achieving fast, laser-driven spintronic devices.