论文标题
Texpose:自我监督的6D对象姿势估计的神经纹理学习
TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose Estimation
论文作者
论文摘要
在本文中,我们从合成数据和一些未标记的真实图像中引入了6D对象姿势估计的神经纹理学习。我们的主要贡献是一种新颖的学习方案,它消除了以前作品的缺点,即对共同模型的强烈依赖或额外的改进。这些以前是提供收敛的培训信号所必需的。我们制定了一个方案,例如关于纹理学习和姿势学习的两个亚优化问题。我们分别学会从真实图像收集中预测对象的现实纹理,并从Pixel-Perfect合成数据中学习姿势估计。结合这两种功能可以综合逼真的新视图,以准确的几何形状监督姿势估计器。为了减轻纹理学习阶段中存在的噪声和分割缺陷,我们提出了基于表面的对抗训练损失以及合成数据的质地正则化。我们证明,所提出的方法显着优于最新的最新方法,而没有基本真相的注释,并证明了对看不见的场景的实质性概括改进。值得注意的是,我们的计划即使以较低的性能初始化,也可以大大改善所采用的姿势估计器。
In this paper, we introduce neural texture learning for 6D object pose estimation from synthetic data and a few unlabelled real images. Our major contribution is a novel learning scheme which removes the drawbacks of previous works, namely the strong dependency on co-modalities or additional refinement. These have been previously necessary to provide training signals for convergence. We formulate such a scheme as two sub-optimisation problems on texture learning and pose learning. We separately learn to predict realistic texture of objects from real image collections and learn pose estimation from pixel-perfect synthetic data. Combining these two capabilities allows then to synthesise photorealistic novel views to supervise the pose estimator with accurate geometry. To alleviate pose noise and segmentation imperfection present during the texture learning phase, we propose a surfel-based adversarial training loss together with texture regularisation from synthetic data. We demonstrate that the proposed approach significantly outperforms the recent state-of-the-art methods without ground-truth pose annotations and demonstrates substantial generalisation improvements towards unseen scenes. Remarkably, our scheme improves the adopted pose estimators substantially even when initialised with much inferior performance.