论文标题

在晶体中电信波长处的纠缠光子的量子存储

Quantum storage of entangled photons at telecom wavelengths in a crystal

论文作者

Jiang, Ming-Hao, Xue, Wenyi, He, Qian, An, Yu-Yang, Zheng, Xiaodong, Xu, Wen-Jie, Xie, Yu-Bo, Lu, Yanqing, Zhu, Shining, Ma, Xiao-Song

论文摘要

Quantum Internet与我们今天使用的Internet协同作用 - 承诺为下一代信息处理提供一个促成平台,包括指数加速分布式计算,安全通信和高精度计量学。实现这种全球网络的关键要素是量子纠缠的分布和存储。由于基于地面的量子网络可能基于现有的光纤网络,因此电信波长纠缠的光子和相应的量子记忆具有中心兴趣。最近,$ \ rm^{167} er^{3+} $ ions已被确定为电信波长处有效,宽带量子内存的有前途的候选者。但是,迄今为止,尚未报告使用这些有前途的离子的量子内存的关键步骤,$ \ rm^{167} er^{3+} $。在这里,我们证明了基于氮化硅微环谐振器产生的两个电信光子的纠缠状态的存储和回忆。结合纠缠光子的自然窄线路和$ \ rm^{167} er^{3+} $ ions的较长存储时间,我们达到的存储时间为1.936 $μ$ s,比以前的作品长387倍。在晶体中成功存储纠缠的储存通过违反23个标准偏差(-0.234美元$ \ pm 0.010)的纠缠证人的认证,该证人在1.936 $ $ $ $ $ s存储时间。这些结果为基于固态设备实现量子网络的方式铺平了道路。

The quantum internet -- in synergy with the internet that we use today -- promises an enabling platform for next-generation information processing, including exponentially speed-up distributed computation, secure communication, and high-precision metrology. The key ingredients for realizing such a global network are the distribution and storage of quantum entanglement. As ground-based quantum networks are likely to be based on existing fiber networks, telecom-wavelength entangled photons and corresponding quantum memories are of central interest. Recently, $\rm^{167}Er^{3+}$ ions have been identified as a promising candidate for an efficient, broadband quantum memory at telecom wavelength. However, to date, no storage of entangled photons, the crucial step of quantum memory using these promising ions, $\rm^{167}Er^{3+}$, has been reported. Here, we demonstrate the storage and recall of the entangled state of two telecom photons generated from an integrated photonic chip based on a silicon nitride micro-ring resonator. Combining the natural narrow linewidth of the entangled photons and long storage time of $\rm^{167}Er^{3+}$ ions, we achieve storage time of 1.936 $μ$s, more than 387 times longer than in previous works. Successful storage of entanglement in the crystal is certified by a violation of an entanglement witness with more than 23 standard deviations (-0.234 $\pm$ 0.010) at 1.936 $μ$s storage time. These results pave the way for realizing quantum networks based on solid-state devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源