论文标题

常规完整置换多项式的一般结构

A general construction of regular complete permutation polynomials

论文作者

Lu, Wei, Wu, Xia, Wang, Yufei, Cao, Xiwang

论文摘要

令$ r \ geq 3 $为正整数,$ \ mathbb {f} _q $带有$ q $元素的有限字段。在本文中,我们考虑了$ f $ r $的完整置换属性,其形式为$ f =τ\circσ_m\circtτ^{ - 1} $,其中$τ$是扩展字段$ \ mathbb {f} _ {q^d} $ y mathbb {f}的PP $ \ mathbb {f} _ {q^d} $。对于任何正整数$ r $,我们提供了$ r $ r $的PPS的一般结构。当$τ$是添加剂时,我们为任何正整数$ r $ $ $ $ r $ $ r $ regiargular cpps提供了一般结构。当$τ$不是添加剂时,我们为$ r = 3,4,5,6,7 $的扩展字段提供了许多常规CPP示例,并且对于任意的奇数正整数$ r $。这些示例是Xu,Zeng和Zhang构建的$ r $ regigular CPP的一类概括(des。CodesCryptogr。90,545-575(2022))。

Let $r\geq 3$ be a positive integer and $\mathbb{F}_q$ the finite field with $q$ elements. In this paper, we consider the $r$-regular complete permutation property of maps with the form $f=τ\circσ_M\circτ^{-1}$ where $τ$ is a PP over an extension field $\mathbb{F}_{q^d}$ and $σ_M$ is an invertible linear map over $\mathbb{F}_{q^d}$. We give a general construction of $r$-regular PPs for any positive integer $r$. When $τ$ is additive, we give a general construction of $r$-regular CPPs for any positive integer $r$. When $τ$ is not additive, we give many examples of regular CPPs over the extension fields for $r=3,4,5,6,7$ and for arbitrary odd positive integer $r$. These examples are the generalization of the first class of $r$-regular CPPs constructed by Xu, Zeng and Zhang (Des. Codes Cryptogr. 90, 545-575 (2022)).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源