论文标题
$ C_5 $和$ C_5^{ - } $的阳性二号Turán号码
Positive co-degree Turán number for $C_5$ and $C_5^{-}$
论文作者
论文摘要
The \emph{minimum positive co-degree} $δ^{+}_{r-1}(H)$ of a non-empty $r$-graph $H$ is the maximum $k$ such that if $S$ is an $(r-1)$-set contained in a hyperedge of $H$, then $S$ is contained in at least $k$ hyperedges of $H$.对于任何$ r $ -graph $ f $,\ emph {正学位turán编号} $ \ mathrm {co}^{+} {+} {+} $ h $。在本文中,我们确定$ C_5 $和$ C_5^{ - } $的正学位Turán号码。
The \emph{minimum positive co-degree} $δ^{+}_{r-1}(H)$ of a non-empty $r$-graph $H$ is the maximum $k$ such that if $S$ is an $(r-1)$-set contained in a hyperedge of $H$, then $S$ is contained in at least $k$ hyperedges of $H$. For any $r$-graph $F$, the \emph{positive degree Turán number} $\mathrm{co}^{+}\mathrm{ex}(n,F)$ is defined as the maximum value of $δ^{+}_{r-1}(H)$ over all $n$-vertex $F$-free non-empty $r$-graphs $H$. In this paper, we determine the positive degree Turán number for $C_5$ and $C_5^{-}$.