论文标题
单位球体中刻有equivacetal polytopes的表面区域$ \ mathbb {s}^2 $
Surface areas of equifacetal polytopes inscribed in the unit sphere $\mathbb{S}^2$
论文作者
论文摘要
本文关注的是在$ \ mathbb {r}^3 $中将7或8点放在单元球上$ \ mathbb {s}^2 $上的问题,以使点的凸壳的表面积最大化。在每种情况下,都给出了具有一致的同学或一致的等边三角形方面的凸壳的解决方案。
This article is concerned with the problem of placing seven or eight points on the unit sphere $\mathbb{S}^2$ in $\mathbb{R}^3$ so that the surface area of the convex hull of the points is maximized. In each case, the solution is given for convex hulls with congruent isosceles or congruent equilateral triangular facets.