论文标题
纠缠效率的两分分布的量子计算
Entanglement-efficient bipartite-distributed quantum computing
论文作者
论文摘要
在嘈杂的中间量子计算中,可以通过分布式量子计算(DQC)扩展单个量子处理单元(QPU)的有限可扩展性,其中人们可以通过纠缠辅助的地方操作和经典通信在两个QPU上实施全局操作。为了促进实验中的这种DQC,我们需要一个纠缠效率的协议。为此,我们将协议扩展在[Eisert等。 Al。,PRA,62:052317(2000)]在本地实施每个非本地控制的独立门,并用一个最大纠缠的一对到包装协议,该配对协议可以使用一个最大纠缠的一对可以在本地包装多个非局部非局部控制的对单生。特别是,引入了两种类型的包装过程作为构建块,即分布过程和嵌入过程。每个分布过程都用一对纠缠一对在本地分布相应的门。然后,通过嵌入过程来提高纠缠的效率,该过程合并了两个非顺序分发过程,从而节省了纠缠成本。我们表明,量子电路的分配性和嵌入性结构可以通过相应的包装图和冲突图完全表示。基于这些图,我们得出了启发式算法,以找到针对由两方实施的给定量子电路的分布过程的纠缠有效填充。这些算法可以确定DQC中所需数量的局部辅助矩。我们将这些算法应用于单一耦合群集电路的两分dQC,并通过嵌入发现纠缠成本大大降低。该方法可以确定量子电路DQC的纠缠成本的建设性上限。
In noisy intermediate-scale quantum computing, the limited scalability of a single quantum processing unit (QPU) can be extended through distributed quantum computing (DQC), in which one can implement global operations over two QPUs by entanglement-assisted local operations and classical communication. To facilitate this type of DQC in experiments, we need an entanglement-efficient protocol. To this end, we extend the protocol in [Eisert et. al., PRA, 62:052317(2000)] implementing each nonlocal controlled-unitary gate locally with one maximally entangled pair to a packing protocol, which can pack multiple nonlocal controlled-unitary gates locally using one maximally entangled pair. In particular, two types of packing processes are introduced as the building blocks, namely the distributing processes and embedding processes. Each distributing process distributes corresponding gates locally with one entangled pair. The efficiency of entanglement is then enhanced by embedding processes, which merge two non-sequential distributing processes and hence save the entanglement cost. We show that the structure of distributability and embeddability of a quantum circuit can be fully represented by the corresponding packing graphs and conflict graphs. Based on these graphs, we derive heuristic algorithms for finding an entanglement-efficient packing of distributing processes for a given quantum circuit to be implemented by two parties. These algorithms can determine the required number of local auxiliary qubits in the DQC. We apply these algorithms for bipartite DQC of unitary coupled-cluster circuits and find a significant reduction of entanglement cost through embeddings. This method can determine a constructive upper bound on the entanglement cost for the DQC of quantum circuits.