论文标题
Eguchi-Hanson-Ads solitons的相变和稳定性
Phase Transitions and Stability of Eguchi-Hanson-AdS Solitons
论文作者
论文摘要
Eguchi-Hanson-ads $ _5 $ spaceTimes家族是一类静态的,地球上渐近地完成本地广告$ _5 $ _5 $ soliton Einstein方程的Soliton解决方案,具有负宇宙学常数。它们的质量为负质量,并由整数$ p \ geq 3 $进行参数化,并带有与空间拓扑$ l(p,1)$的共形边界。我们在此背景下研究标量波方程的模式解,并表明,类似于AD $ _5 $,几何形状承认了正常的模式频谱(即既不会随时间生长或衰减的溶液)。此外,我们还讨论了这些孤子空间的其他几何特性,包括因果地球学的行为及其热力学特性。我们还指出了与Ads Soliton的令人惊讶的联系。
The Eguchi-Hanson-AdS$_5$ family of spacetimes are a class of static, geodesically complete asymptotically locally AdS$_5$ soliton solutions of the vacuum Einstein equations with negative cosmological constant. They have negative mass and are parameterized by an integer $p\geq 3$ with a conformal boundary with spatial topology $L(p,1)$. We investigate mode solutions of the scalar wave equation on this background and show that, similar to AdS$_5$, the geometry admits a normal mode spectrum (i.e. solutions that neither grow or decay in time). In addition, we also discuss other geometric properties of these soliton spacetimes, including the behaviour of causal geodesics and their thermodynamic properties. We also point out a surprising connection with the AdS soliton.