论文标题

粉丝小说的内容评分分类

Content Rating Classification for Fan Fiction

论文作者

Qiao, Yu, Pope, James

论文摘要

内容评分可以使受众确定各种媒体产品的适用性。随着粉丝小说的最近出现,粉丝小说内容评级的关键问题已经出现。无论是粉丝小说内容评分是自愿完成还是通过法规要求,都需要自动化内容评分分类。问题是要进行粉丝小说文本并确定适当的内容评分。尽管没有应用于粉丝小说,但仍尝试使用其他领域的方法,例如在线书籍。我们提出了自然语言处理技术,包括传统和深度学习方法,以自动确定内容评分。我们表明,这些方法对多分类产生了较差的准确性结果。然后,我们证明将问题视为二进制分类问题会产生更好的准确性。最后,我们相信并提供了一些证据,表明当前的自称方法导致标签不正确限制了分类结果。

Content ratings can enable audiences to determine the suitability of various media products. With the recent advent of fan fiction, the critical issue of fan fiction content ratings has emerged. Whether fan fiction content ratings are done voluntarily or required by regulation, there is the need to automate the content rating classification. The problem is to take fan fiction text and determine the appropriate content rating. Methods for other domains, such as online books, have been attempted though none have been applied to fan fiction. We propose natural language processing techniques, including traditional and deep learning methods, to automatically determine the content rating. We show that these methods produce poor accuracy results for multi-classification. We then demonstrate that treating the problem as a binary classification problem produces better accuracy. Finally, we believe and provide some evidence that the current approach of self-annotating has led to incorrect labels limiting classification results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源