论文标题
在一系列特殊的Euler-Lagrange方程中
On a class of special Euler-Lagrange equations
论文作者
论文摘要
我们在能量功能$ i(u)= \int_Ωf(\ det du)\,dx,$ in c^1 in c^1(\ mathbb r)中的欧拉 - 拉格朗格方程(\ mathbb r)。对于某些弱解决方案$ u $,我们表明y y y y y y y y y y y y y ye $ f'(\ mathbb r)。 $ i(u)的最小化器。$但是,存在其他弱解决方案,因此$ f'(\ det du)$在$ω上并不恒定。$我们还证明了有关同构溶液,非quasimonotonicticy,radial solutions,radial solutions,以及在2-D案例中的一些特殊属性和问题的结果。
We make some remarks on the Euler-Lagrange equation of energy functional $I(u)=\int_Ωf(\det Du)\,dx,$ where $f\in C^1(\mathbb R).$ For certain weak solutions $u$ we show that the function $f'(\det Du)$ must be a constant over the domain $Ω$ and thus, when $f$ is convex, all such solutions are an energy minimizer of $I(u).$ However, other weak solutions exist such that $f'(\det Du)$ is not constant on $Ω.$ We also prove some results concerning the homeomorphism solutions, non-quasimonotonicty, radial solutions, and some special properties and questions in the 2-D cases.